Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.576
Filtrar
2.
J Gen Physiol ; 156(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38652080

RESUMO

Cannabidiol (CBD), the main non-psychotropic phytocannabinoid produced by the Cannabis sativa plant, blocks a variety of cardiac ion channels. We aimed to identify whether CBD regulated the cardiac pacemaker channel or the hyperpolarization-activated cyclic nucleotide-gated channel (HCN4). HCN4 channels are important for the generation of the action potential in the sinoatrial node of the heart and increased heart rate in response to ß-adrenergic stimulation. HCN4 channels were expressed in HEK 293T cells, and the effect of CBD application was examined using a whole-cell patch clamp. We found that CBD depolarized the V1/2 of activation in holo-HCN4 channels, with an EC50 of 1.6 µM, without changing the current density. CBD also sped activation kinetics by approximately threefold. CBD potentiation of HCN4 channels occurred via binding to the closed state of the channel. We found that CBD's mechanism of action was distinct from cAMP, as CBD also potentiated apo-HCN4 channels. The addition of an exogenous PIP2 analog did not alter the ability of CBD to potentiate HCN4 channels, suggesting that CBD also acts using a unique mechanism from the known HCN4 potentiator PIP2. Lastly, to gain insight into CBD's mechanism of action, computational modeling and targeted mutagenesis were used to predict that CBD binds to a lipid-binding pocket at the C-terminus of the voltage sensor. CBD represents the first FDA-approved drug to potentiate HCN4 channels, and our findings suggest a novel starting point for drug development targeting HCN4 channels.


Assuntos
Canabidiol , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas Musculares , Canabidiol/farmacologia , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos
3.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652113

RESUMO

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas de Membrana , Proteínas Musculares , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , AMP Cíclico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Ligação Proteica , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/química , Técnicas de Patch-Clamp , Transferência Ressonante de Energia de Fluorescência , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
4.
Cell Mol Life Sci ; 81(1): 135, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478096

RESUMO

Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Qualidade de Vida , Gânglios da Base/fisiologia , Substância Negra
5.
PLoS Comput Biol ; 20(3): e1011559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517941

RESUMO

Cyclic AMP controls neuronal ion channel activity. For example hyperpolarization-activated cyclic nucleotide-gated (HCN) and M-type K+ channels are activated by cAMP. These effects have been suggested to be involved in astrocyte control of neuronal activity, for example, by controlling the action potential firing frequency. In cortical neurons, cAMP can induce mixed-mode oscillations (MMOs) consisting of small-amplitude, subthreshold oscillations separating complete action potentials, which lowers the firing frequency greatly. We extend a model of neuronal activity by including HCN and M channels, and show that it can reproduce a series of experimental results under various conditions involving and inferring with cAMP-induced activation of HCN and M channels. In particular, we find that the model can exhibit MMOs as found experimentally, and argue that both HCN and M channels are crucial for reproducing these patterns. To understand how M and HCN channels contribute to produce MMOs, we exploit the fact that the model is a three-time scale dynamical system with one fast, two slow, and two super-slow variables. We show that the MMO mechanism does not rely on the super-slow dynamics of HCN and M channel gating variables, since the model is able to produce MMOs even when HCN and M channel activity is kept constant. In other words, the cAMP-induced increase in the average activity of HCN and M channels allows MMOs to be produced by the slow-fast subsystem alone. We show that the slow-fast subsystem MMOs are due to a folded node singularity, a geometrical structure well known to be involved in the generation of MMOs in slow-fast systems. Besides raising new mathematical questions for multiple-timescale systems, our work is a starting point for future research on how cAMP signalling, for example resulting from interactions between neurons and glial cells, affects neuronal activity via HCN and M channels.


Assuntos
Nucleotídeos Cíclicos , Canais de Potássio , Canais de Potássio/química , Nucleotídeos Cíclicos/farmacologia , Neurônios , AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos
6.
CNS Neurosci Ther ; 30(2): e14627, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38353058

RESUMO

BACKGROUND: Systemic inflammation in which lipopolysaccharide (LPS) is released into circulation can cause cognitive dysfunction and we have previously shown that LPS impaired working memory (WM) which refers to the ability to guide incoming behavior by retrieving recently acquired information. However, the mechanism is not very clear, and currently, there is no approved strategy to improve inflammation-induced WM deficit. Notably, epidemiological studies have demonstrated a lower occurrence rate of inflammatory-related diseases in smoking patients, suggesting that inflammation-induced WM impairment may be improved by nicotine treatment. Here, our object is to investigate the effect and potential mechanisms of acute and chronic nicotine treatment on LPS-produced WM deficiency. METHODS: Delayed alternation T-maze task (DAT) was applied for evaluating WM which includes both the short-term information storage and the ability to correct errors in adult male mice. Immunofluorescence staining and immunoblotting were used for assessing the levels and distribution of CREB-regulated transcription coactivator 1 (CRTC1) and hyperpolarization-activated cation channels 2 (HCN2) in the medial prefrontal cortex (mPFC) and hippocampus. Quantitative PCR and ELISA were employed for analyzing the mRNA and protein levels of TNF-α and IL-1ß. RESULTS: Our results revealed that administration of LPS (i.p.) at a dose of 0.5 mg/kg significantly produced WM impairment in the DAT task accompanied by an increase in IL-1ß and TNF-α expression in the mPFC. Moreover, intra-mPFC infusion of IL-1Ra, an IL-1 antagonist, markedly alleviated LPS-induced WM deficiency. More important, chronic (2 weeks) but not acute nicotine (0.2 mg/kg, subcutaneous) treatment significantly alleviated LPS-induced WM deficiency by upregulating CRTC1 and HCN2. Of note, intra-mPFC infusion of HCN blocker ZD7288 produced significant WM deficiency. CONCLUSIONS: In summary, in this study, we show that chronic nicotine treatment ameliorates acute inflammation-induced working memory deficiency by increasing CRTC1 and HCN2 in adult male mice.


Assuntos
Memória de Curto Prazo , Nicotina , Humanos , Camundongos , Masculino , Animais , Memória de Curto Prazo/fisiologia , Nicotina/farmacologia , Nicotina/uso terapêutico , Nicotina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/toxicidade , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Fatores de Transcrição/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Canais de Potássio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo
7.
Exp Eye Res ; 241: 109847, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401854

RESUMO

Ivabradine, a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel inhibitor, has been reported to induce photosensitivity-related visual disturbances such as phosphene in humans. Ivabradine-induced visual disturbances are caused by inhibition of HCN channels in the retina, and the mechanisms have been verified using HCN channel knockout mice and electroretinography (ERG). However, in rats, classical ERG using single flash light stimulus with standard analyses of waveform amplitude and latency has not revealed abnormal retinal function after administration of ivabradine. To verify whether retinal dysfunction after ivabradine administration was detectable in rats, we performed ERG using multistep flash light stimulation at the time when plasma concentration of ivabradine was high. Furthermore, the mechanism of the change in the waveform that appeared after the b-wave was investigated. Ivabradine and cilobradine, a selective HCN channel inhibitor, were administered subcutaneously to rats at 4-40 mg/kg as a single dose, and flash or long-duration ERG recordings at each light stimulus luminance were conducted 1.5 h after administration. Plasma and retinal concentrations of both compounds were measured immediately after the ERG recordings. In the flash ERG, prolongation of a- and/or b-wave latencies were detected at each light stimulus, and dose-dependent waveform changes after the b-wave were recorded at the specific light stimulus luminance for both compounds. These ERG changes increased in response to increasing plasma and retinal concentrations for both ivabradine and cilobradine. In the long-duration light stimulus ERG, a change in the waveform of the b-wave trough and attenuation of the c-wave were recorded, suggesting that the feedback control in the photoreceptor cells may be inhibited. This study revealed that the retinal dysfunction by HCN channel inhibitors in rats can be detected by multistep light stimulus ERG. Additionally, we identified that the inhibition of feedback current and the sustained responses in the photoreceptor cells cause the retinal dysfunction of HCN channel inhibitors in rats.


Assuntos
Eletrorretinografia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Camundongos , Humanos , Ratos , Animais , Ivabradina , Retina , Visão Ocular , Transtornos da Visão , Camundongos Knockout , Estimulação Luminosa
8.
BMC Biol ; 22(1): 29, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317233

RESUMO

BACKGROUND: Cyclic Nucleotide-Binding Domain (CNBD)-family channels display distinct voltage-sensing properties despite sharing sequence and structural similarity. For example, the human Ether-a-go-go Related Gene (hERG) channel and the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel share high amino acid sequence similarity and identical domain structures. hERG conducts outward current and is activated by positive membrane potentials (depolarization), whereas HCN conducts inward current and is activated by negative membrane potentials (hyperpolarization). The structural basis for the "opposite" voltage-sensing properties of hERG and HCN remains unknown. RESULTS: We found the voltage-sensing domain (VSD) involves in modulating the gating polarity of hERG. We identified that a long-QT syndrome type 2-related mutation within the VSD, K525N, mediated an inwardly rectifying non-deactivating current, perturbing the channel closure, but sparing the open state and inactivated state. K525N rescued the current of a non-functional mutation in the pore helix region (F627Y) of hERG. K525N&F627Y switched hERG into a hyperpolarization-activated channel. The reactivated inward current induced by hyperpolarization mediated by K525N&F627Y can be inhibited by E-4031 and dofetilide quite well. Moreover, we report an extracellular interaction between the S1 helix and the S5-P region is crucial for modulating the gating polarity. The alanine substitution of several residues in this region (F431A, C566A, I607A, and Y611A) impaired the inward current of K525N&F627Y. CONCLUSIONS: Our data provide evidence that a potential cooperation mechanism in the extracellular vestibule of the VSD and the PD would determine the gating polarity in hERG.


Assuntos
Canal de Potássio ERG1 , Ativação do Canal Iônico , Humanos , Sequência de Aminoácidos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/genética , Mutação , Nucleotídeos Cíclicos , Canal de Potássio ERG1/genética
9.
Proc Natl Acad Sci U S A ; 121(9): e2315132121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377199

RESUMO

The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ligantes , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , AMP Cíclico/metabolismo , Fenômenos Biofísicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
10.
Acta Physiol (Oxf) ; 240(3): e14085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230890

RESUMO

Myocardial infarction (MI) and its associated complications including ventricular arrhythmias and heart failure are responsible for a significant incidence of morbidity and mortality worldwide. The ensuing cardiomyocyte loss results in neurohormone-driven cardiac remodeling, which leads to chronic heart failure in MI survivors. Ivabradine is a heart rate modulation agent currently used in treatment of chronic heart failure with reduced ejection fraction. The canonical target of ivabradine is the hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in cardiac pacemaker cells. However, in post-MI hearts, HCN can also be expressed ectopically in non-pacemaker cardiomyocytes. There is an accumulation of intriguing evidence to suggest that ivabradine also possesses cardioprotective effects that are independent of heart rate reduction. This review aims to summarize and discuss the reported cardioprotective mechanisms of ivabradine beyond heart rate modulation in myocardial infarction through various molecular mechanisms including the prevention of reactive oxygen species-induced mitochondrial damage, improvement of autophagy system, modulation of intracellular calcium cycling, modification of ventricular electrophysiology, and regulation of matrix metalloproteinases.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ivabradina/farmacologia , Ivabradina/uso terapêutico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Frequência Cardíaca/fisiologia , Benzazepinas/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos
11.
Nat Commun ; 15(1): 843, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287019

RESUMO

Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Conformação Proteica em alfa-Hélice , Nucleotídeos Cíclicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
12.
Pflugers Arch ; 476(3): 337-350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159130

RESUMO

In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.


Assuntos
Canais de Cálcio Tipo T , Epilepsia Tipo Ausência , Ratos , Animais , Masculino , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/metabolismo , Ratos Wistar , Receptores de GABA-A , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Eletroencefalografia , Anticonvulsivantes/uso terapêutico , Muscimol , Bicuculina , Bloqueadores dos Canais de Cálcio/farmacologia , Ácido gama-Aminobutírico , Modelos Animais de Doenças
13.
Exp Neurol ; 371: 114572, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852467

RESUMO

Cuprizone (CPZ)-induced alterations in axonal myelination are associated with a period of neuronal hyperexcitability and increased activity of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in the thalamocortical (TC) system. Substances used for the treatment of multiple sclerosis (MS) have been shown to normalize neuronal excitability in CPZ-treated mice. Therefore, we aimed to examine the effects of diroximel fumarate (DRF) and the sphingosine 1-phospate receptor (S1PR) modulator siponimod on action potential firing and the inward current (Ih) carried by HCN ion channels in naive conditions and during different stages of de- and remyelination. Here, DRF application reduced Ih current density in ex vivo patch clamp recordings from TC neurons of the ventrobasal thalamic complex (VB), thereby counteracting the increase of Ih during early remyelination. Siponimod reduced Ih in VB neurons under control conditions but had no effect in neurons of the auditory cortex (AU). Furthermore, siponimod increased and decreased AP firing properties of neurons in VB and AU, respectively. Computational modeling revealed that both DRF and siponimod influenced thalamic bursting during early remyelination by delaying the onset and decreasing the interburst frequency. Thus, substances used in MS treatment normalize excitability in the TC system by influencing AP firing and Ih.


Assuntos
Fármacos Neuroprotetores , Remielinização , Camundongos , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Modelos Teóricos
14.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958665

RESUMO

Chronic heart diseases, such as coronary heart disease, heart failure, secondary arterial hypertension, and dilated and hypertrophic cardiomyopathies, are widespread and have a fairly high incidence of mortality and disability. Most of these diseases are characterized by cardiac arrhythmias, conduction, and contractility disorders. Additionally, interruption of the electrical activity of the heart, the appearance of extensive ectopic foci, and heart failure are all symptoms of a number of severe hereditary diseases. The molecular mechanisms leading to the development of heart diseases are associated with impaired permeability and excitability of cell membranes and are mainly caused by the dysfunction of cardiac Ca2+ channels. Over the past 50 years, more than 100 varieties of ion channels have been found in the cardiovascular cells. The relationship between the activity of these channels and cardiac pathology, as well as the general cellular biological function, has been intensively studied on several cell types and experimental animal models in vivo and in situ. In this review, I discuss the origin of genetic Ca2+ channelopathies of L- and T-type voltage-gated calcium channels in humans and the role of the non-genetic dysfunctions of Ca2+ channels of various types: L-, R-, and T-type voltage-gated calcium channels, RyR2, including Ca2+ permeable nonselective cation hyperpolarization-activated cyclic nucleotide-gated (HCN), and transient receptor potential (TRP) channels, in the development of cardiac pathology in humans, as well as various aspects of promising experimental studies of the dysfunctions of these channels performed on animal models or in vitro.


Assuntos
Insuficiência Cardíaca , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Animais , Humanos , Arritmias Cardíacas/genética , Modelos Animais , Canais de Cálcio/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
15.
Proc Natl Acad Sci U S A ; 120(49): e2305135120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38032931

RESUMO

In a family with inappropriate sinus tachycardia (IST), we identified a mutation (p.V240M) of the hyperpolarization-activated cyclic nucleotide-gated type 4 (HCN4) channel, which contributes to the pacemaker current (If) in human sinoatrial node cells. Here, we clinically study fifteen family members and functionally analyze the p.V240M variant. Macroscopic (IHCN4) and single-channel currents were recorded using patch-clamp in cells expressing human native (WT) and/or p.V240M HCN4 channels. All p.V240M mutation carriers exhibited IST that was accompanied by cardiomyopathy in adults. IHCN4 generated by p.V240M channels either alone or in combination with WT was significantly greater than that generated by WT channels alone. The variant, which lies in the N-terminal HCN domain, increased the single-channel conductance and opening frequency and probability of HCN4 channels. Conversely, it did not modify the channel sensitivity for cAMP and ivabradine or the level of expression at the membrane. Treatment with ivabradine based on functional data reversed the IST and the cardiomyopathy of the carriers. In computer simulations, the p.V240M gain-of-function variant increases If and beating rate and thus explains the IST of the carriers. The results demonstrate the importance of the unique HCN domain in HCN4, which stabilizes the channels in the closed state.


Assuntos
Cardiomiopatias , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Adulto , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Taquicardia Sinusal , Canais de Potássio/genética , Ivabradina/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Mutação com Ganho de Função , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nó Sinoatrial , Cardiomiopatias/genética
16.
Elife ; 122023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937828

RESUMO

Melanopsin signaling within intrinsically photosensitive retinal ganglion cell (ipRGC) subtypes impacts a broad range of behaviors from circadian photoentrainment to conscious visual perception. Yet, how melanopsin phototransduction within M1-M6 ipRGC subtypes impacts cellular signaling to drive diverse behaviors is still largely unresolved. The identity of the phototransduction channels in each subtype is key to understanding this central question but has remained controversial. In this study, we resolve two opposing models of M4 phototransduction, demonstrating that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dispensable for this process and providing support for a pathway involving melanopsin-dependent potassium channel closure and canonical transient receptor potential (TRPC) channel opening. Surprisingly, we find that HCN channels are likewise dispensable for M2 phototransduction, contradicting the current model. We instead show that M2 phototransduction requires TRPC channels in conjunction with T-type voltage-gated calcium channels, identifying a novel melanopsin phototransduction target. Collectively, this work resolves key discrepancies in our understanding of ipRGC phototransduction pathways in multiple subtypes and adds to mounting evidence that ipRGC subtypes employ diverse phototransduction cascades to fine-tune cellular responses for downstream behaviors.


Assuntos
Transdução de Sinal Luminoso , Células Ganglionares da Retina , Opsinas de Bastonetes , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Transdução de Sinal Luminoso/fisiologia , Células Ganglionares da Retina/fisiologia , Opsinas de Bastonetes/metabolismo , Visão Ocular , Animais , Camundongos
17.
Nat Commun ; 14(1): 6595, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852983

RESUMO

Ion channels function within a membrane environment characterized by dynamic lipid compartmentalization. Limited knowledge exists regarding the response of voltage-gated ion channels to transmembrane potential within distinct membrane compartments. By leveraging fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET), we visualized the localization of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in membrane domains. HCN4 exhibits a greater propensity for incorporation into ordered lipid domains compared to HCN1. To investigate the conformational changes of the S4 helix voltage sensor of HCN channels, we used dual stop-codon suppression to incorporate different noncanonical amino acids, orthogonal click chemistry for site-specific fluorescence labeling, and transition metal FLIM-FRET. Remarkably, altered FRET levels were observed between VSD sites within HCN channels upon disruption of membrane domains. We propose that the voltage-sensor rearrangements, directly influenced by membrane lipid domains, can explain the heightened activity of pacemaker HCN channels when localized in cholesterol-poor, disordered lipid domains, leading to membrane hyperexcitability and diseases.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Lipídeos de Membrana , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
18.
Cereb Cortex ; 33(24): 11501-11516, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874022

RESUMO

Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/patologia , Córtex Entorrinal/patologia , Macaca mulatta/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Cálcio , Calbindinas , Glutamatos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo
19.
Zhen Ci Yan Jiu ; 48(10): 969-976, 2023 Oct 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37879946

RESUMO

OBJECTIVES: To observe the therapeutic effect of electroacupuncture (EA) on neurogenic urinary retention rats, so as to explore the underlying mechanism of EA in treating neurogenic urinary retention by focusing on 3-phosphoinositide-dependent protein kinase 1 (PDK1)/protein kinase B (Akt)/hyperpolarization activated cyclic nucleotide-gated cation channel 4 (HCN4) pathway. METHODS: Female SD rats were randomly divided into sham operation, model, EA, PDK1 inhibitor, HCN4 blocker and EA + HCN4 blocker groups, with 20 rats in each group. The model of sacral spinal cord injury was established by modified Hassan Shaker spinal cord transection method. EA (2 Hz/15 Hz, 0.5 mA) was applied to "Zhongji" (CV3) and "Zhongliao" (BL33) for 20 min, once daily for 10 days. Rats of the PDK1 inhibitor group received intraperitoneal injection of OSU-03012 (20 mg/kg), and rats of the HCN4 blocker group received intraperitoneal injection of ivabradine (10 mg/kg), both once every other day for 10 days. The urodynamic indexes of rats were detected by multi-channel physiological recorder;muscle strip test was used to detect detrusor excitability;the morphological changes of bladder were observed by HE staining. Immunofluorescence double staining was used to detect the co-expression of HCN4 and C-Kit, a specific marker of interstitial cells of Cajal in bladder. Western blot was used to detect the expression of PDK1/Akt/HCN4 pathway proteins in bladder tissue and heat shock protein 27 (HSP27), a protein related to bladder contraction function. RESULTS: Compared with the sham operation group, the rats in the model group showed urinary dysfunction, decreased leak point pressure, isolated detrusor spontaneous contraction frequency, fluorescence intensity of C-Kit positive cells, HCN4+/C-Kit+ co-expression, HCN4 and p-HSP27/HSP27 protein expression in bladder tissue (P<0.05), and increased maximum bladder capacity and comp-liance, minimum tension during contraction of isolated detrusor, PDK1 and p-Akt/Akt protein expression in bladder tissue (P<0.05). Meanwhile, the above index were all reversed after EA and PDK1 inhibitor intervention (P<0.05). In comparison with the EA group, the rats had severe urinary dysfunction, the urine leakage point pressure, spontaneous contraction frequency, fluorescence intensity of C-Kit positive cells, the co-expression of HCN4+/C-Kit+, and the protein expression of HCN4 and p-HSP27/HSP27 were decreased (P<0.05), the maximum bladder capacity and compliance, the minimum tension during contraction of isolated detrusor, and the protein expression of PDK1 and p-Akt/Akt in bladder tissue were increased (P<0.05) in both HCN4 blocker and EA+HCN4 blocker groups. HE staining showed exfoliated bladder epithelium and disordered layers, vacuolization of bladder wall cells, with infiltration of neutrophils in mucosal and muscular layers in the model group, which were relatively milder in the EA and PDK1 inhibitor groups, but worse in the HCN4 blocker and EA + HCN4 blocker groups. CONCLUSIONS: EA can improve the urinary dysfunction in rats with neurogenic urinary retention, which may be related to its effect in inhibiting the activation of PDK1/Akt pathway, promo-ting HCN4-mediated detrusor excitatory contraction and urinary electrical signal activation.


Assuntos
Eletroacupuntura , Traumatismos da Medula Espinal , Retenção Urinária , Animais , Feminino , Ratos , Proteínas de Choque Térmico HSP27/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais de Potássio , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia
20.
Nature ; 623(7985): 193-201, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880360

RESUMO

Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.


Assuntos
Microscopia Crioeletrônica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ouriços-do-Mar , Trocadores de Sódio-Hidrogênio , Animais , Masculino , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Concentração de Íons de Hidrogênio , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/ultraestrutura , Potenciais da Membrana , Multimerização Proteica , Ouriços-do-Mar/química , Ouriços-do-Mar/metabolismo , Ouriços-do-Mar/ultraestrutura , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/ultraestrutura , Motilidade dos Espermatozoides , Espermatozoides/química , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...